Contents

Prefaceiii

Learning and Intuitionvii

  1. Data and Information1

    1. Data Representation . . . . . . . . . . . . . . . . . . . . . . . . .2

    2. Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . .4

  2. Data Visualization7

  3. Learning11

    1. In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
  4. Types of Machine Learning17

    1. In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
  5. Nearest Neighbors Classification21

    1. The Idea In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . .23
  6. The Naive Bayesian Classifier25

    1. The NaiveBayes Model. . . . . . . . . . . . . . . . . . . . . .25

    2. Learning a Naive Bayes Classifier. . . . . . . . . . . . . . . . .27

    3. Class-Prediction for New Instances . . . . . . . . . . . . . . . . .28

    4. Regularization . . . . . . . . . . . . . . . . . . .. . . . . . . . .30

    5. Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

    6. The Idea In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . .31

  7. The Perceptron33

    1. The Perceptron Model. . . . . . . . . . . . . . . . . . . . . . .34

i

iiCONTENTS

7.2A Different Cost function: Logistic Regression. . . . . . . . . .37

7.3The Idea In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . .38

  1. Support Vector Machines39

    1. The Non-Separable case. . . . . . . . . . . . . . . . . . . . . .43
  2. Support Vector Regression47

  3. Kernel ridge Regression51

    1. Kernel Ridge Regression . . . . . . . . . . . . . . . . . . . . . .52

    2. An alternative derivation. . . . . . . . . . . . . . . . .. . . . .53

  4. Kernel K-means and Spectral Clustering55

  5. Kernel Principal Components Analysis59

    1. Centering Data in Feature Space . . . . . . . . . . . . . . . . . .61
  6. Fisher Linear Discriminant Analysis63

    1. Kernel Fisher LDA . . . . . . . . . . . . . . . .. . . . . . . . .66

    2. A Constrained Convex Programming Formulation of FDA. . . .68

  7. Kernel Canonical Correlation Analysis69

    1. Kernel CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
  8. Essentials of Convex Optimization73

    1. Lagrangians and all that . . . . . . . . . . . . . . . . . . . . . . .73
  9. Kernel Design77

    1. Polynomials Kernels. . . . . . . . . . . . . . . . . . . . . . . .77

    2. All Subsets Kernel. . . . . . . . . . . . . . . . . . . . . . . . .78

    3. The Gaussian Kernel. . . . . . . . . . . . . . . . . . . . . . . .79

results matching ""

    No results matching ""