Contents
Prefaceiii
Learning and Intuitionvii
Data and Information1
Data Representation . . . . . . . . . . . . . . . . . . . . . . . . .2
Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . .4
Data Visualization7
Learning11
- In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Types of Machine Learning17
- In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Nearest Neighbors Classification21
- The Idea In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . .23
The Naive Bayesian Classifier25
The NaiveBayes Model. . . . . . . . . . . . . . . . . . . . . .25
Learning a Naive Bayes Classifier. . . . . . . . . . . . . . . . .27
Class-Prediction for New Instances . . . . . . . . . . . . . . . . .28
Regularization . . . . . . . . . . . . . . . . . . .. . . . . . . . .30
Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
The Idea In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . .31
The Perceptron33
- The Perceptron Model. . . . . . . . . . . . . . . . . . . . . . .34
i
iiCONTENTS
7.2A Different Cost function: Logistic Regression. . . . . . . . . .37
7.3The Idea In a Nutshell . . . . . . . . . . . . . . . . . . . . . . . .38
Support Vector Machines39
- The Non-Separable case. . . . . . . . . . . . . . . . . . . . . .43
Support Vector Regression47
Kernel ridge Regression51
Kernel Ridge Regression . . . . . . . . . . . . . . . . . . . . . .52
An alternative derivation. . . . . . . . . . . . . . . . .. . . . .53
Kernel K-means and Spectral Clustering55
Kernel Principal Components Analysis59
- Centering Data in Feature Space . . . . . . . . . . . . . . . . . .61
Fisher Linear Discriminant Analysis63
Kernel Fisher LDA . . . . . . . . . . . . . . . .. . . . . . . . .66
A Constrained Convex Programming Formulation of FDA. . . .68
Kernel Canonical Correlation Analysis69
- Kernel CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Essentials of Convex Optimization73
- Lagrangians and all that . . . . . . . . . . . . . . . . . . . . . . .73
Kernel Design77
Polynomials Kernels. . . . . . . . . . . . . . . . . . . . . . . .77
All Subsets Kernel. . . . . . . . . . . . . . . . . . . . . . . . .78
The Gaussian Kernel. . . . . . . . . . . . . . . . . . . . . . . .79